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SUMMARY

The incompressible boundary-layer theory of Truckenbrodt was ex-
tended using a modified Stewartson-type tramsformstion to include com-
pressible boundary-layer development over insulated surfaces. The vari-
ation of turbulent shear stresses wlth Mach number of the bounding poten-
tlal stream was considered using the reference-temperature method of
Eckert. The explicit technique of Truckenbrodt for determining the pro-
file parameter in the incompressible theory wes unchanged so that the
profile parasmeter as well as the momentum thickness can still be evalu-
ated by simple gquadratures in the present theory.

The method is applicable to two-dimensional and axisymmetriec, lami-
nar and turbulent boundary layer, and accounts for the pressure gradient
along the wall for both compressible and incompressible flow.

Experimental measurements of the boundary layer on small axisym-
metric bodies on the wall of & supersonic wind tunnel were compared with
theoretical predictions. For most cases studied, agreement between ex-
periment and theory was within 10 percent.

INTRODUCTION

Tt was first shown by von Karmén (ref. 1} that the differential
equations describing the motion of the fluid in a boundery layer can be
simplified by use of integral thickness parameters. The resulting inte-
gral equations then consider the growth of these parameters (momentum
and displacement thicknesses) in the external stream direction. Refer-
ences 2 and 3 further showed that for incompressible flow all velocity
profiles could be reasongbly represented by one parameter family; this
profile psrameter generslly being the ratio of displacement to momentum
thickness. Determination of any two of these three parameters, momentum
thickness, displacement thickness, and profile parameter, therefore, is
sufficient to describe the over-all boundary-layer profile characteris-
tiecs for most englneering applications.
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The momentum equation has been solved by the Kérm#n-Pohlhsusen-
Holstein method (ref. 2, pp. 93-100) for the laminar incompressible case.
A method of calculation of the plene turbulent houndary layer was first
made by Gruschwitz (ref. 4, pp. 93-98). Von Doenhoff and Tetervin
(ref. 3) also presented a method for calculation of two-dimensional tur-
bulent boundary layer, the procedure of which was later simplified by
Garner (ref. 5). Explicit expressions for momentum thickness in terms
of a simple quadrature were obtained by Buri {ref. 6} and Maskell (ref.
7} for plame turbulent flow, and by Walz {ref. 8) for plane leminar flow.

Recent progress has been made by Truckenbrodt (ref. 9} who devised
a method for computing laminer and turbulent boundary layer for both
two-dimensional and axisymmetric flow. The maln advantage of this method
over references 2 to 8 is that it enables the computation of the profile
parameter as well as the momentum thickness in explicit form by use of
simple quadratures.

References 2 to 9 8ll consider incompressible boundary layer.
Stewartson (ref. 10} presented relations which transformed the two-
dimensional, compressible laminar boundary-layer equetion to the form of
the incompressible case. Cohen and Reshotko (refs. 11 and 12) applied
these transformations to the laminax boundsry layer including the effects
of heat transfer. Van Le (ref. 15) suggested that the Stewartson-type
transformation be used for turbulent as well as lamingr flow 1f time
aversge values were teken for the varisbles. Reshotko and Tucker (ref.
14) and Mager {ref. 15) used these transformations for enalysis of shock-
induced turbulent boundary-layer separation.

This paper uses & modified Stewartson transformstion to change the
finel equations of Truckenbrodt to compressible coordinates for both
two-dimensional and axisymmetric flow. The results should then be ap-
plicable to laminar or turbulent, two-dimensionel or axlsymmetric, com-
pressible or incompressible adigbstic flows with or without surface pres-
sure gradients. The explicit form developed by Truckenbrodt for evalu-~
ating boundary-layer profile parameter and momentum thickness by means
of simple quadratures is retalned.

SYMBOLS
A friction term defined by eq. (5)
a sonlc veloclty
b constent in eq. (10)

c constant in eg. (2}

985y



4526

UH-L bac.-

NACA TN 4022 3

cr

Ce,av

== I o

2= ol

local coefficient of frietion

average coefficient of friction

dissipation (energy converted into heat)

profile parsmeter &%/6

profile parameter &**/6

parameter used in eq. (9)

profile parameter (fig. 1)

total length of boundary layer in longitudinal direction
local Maech number

constant = 1 for laminar flow, 1/6 for turbulent flow
pressure

transformed body radius

body radius

temperature

turbulence energy

longitudinal velocity component at edge of boundary layer, y = d
longitudinal velocity component

transformed longitudinal coordinate

longitudinal coordinate

transformed normal coordinate

normal coordinate

constant in eq. (10)

ratio of specific heats

boundary-layer height
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p% displacement thickness
Sl energy thickness

> varisble in eq. (24)

¢ defined by eq. (23)

L momentum thickness

% defined by eq. (22)

1) absolute viscosity

v kinematic viscoaity

E defined by eq. (12)

o} deneity

T shear stress (includes both laminar and time average turbulent

stresses if any)

©® cone helf angle

Subscripts:

e edge of boundary layer, y = &

I incompressible flow in "physicalﬁ space
i trensformed or incompressible flow
1 laminar

0 free-stream stagnation conditions
jo) flat plate

r recovery

8 starting, or initlsel, condlitions
T transition

t turbulent

w wall or surface value

92%P
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Superscript:
* based on Eckert's reference temperasture used everywhere except
when modifying &
THEORY
Incompressible Momentum Thickness

A brief review, to ald in the understanding of the finsl expressions
used from reference 9, will be given.

The Truckenbrodt method of computing momentum thickness 1s based on
Wieghardt's kinetic energy equation,

e
1 34 (PmE d °1 T, aﬁ—
L 2 (SREe,) =22t 2 _w_ Ti ay (1)
ugR & Pols pls

instead of the momentum integral equation used by references 2 to 8. Use
of the energy equation offers the advantage that the term representing
the sum of the dissipastion and turbulence energies (d + t/boU?) is al-

most independent of profile parsmeter H;, whereas the friction coeffi-

cient, which enters into the momentum equation, varies raepidly with pro-
file paremeter. The dissipation term was studied as a function of Hy

and Uiei/vo by use of Hartree profiles for laminar flow and the results
of references 16 and 17 for turbulent flow.

Equation (l) was therefore integrated, assuming mean values for Hy,

resulting in X
. C+Af pSten plin gx
U6 X
e \j; i) = g8 (2)
0 3+2n l+n
© Uy
where the integration constant C = U3+2n Rl+n(. s%1 é) 01,5

The subscript s denotes initlal conditions. The constant n equals 1
for laminar flow and 1/6 for turbulent flow.

The coefficient A was evaluated by Truckenbrodt by assuming that
the average shearing stress at the wall was of the same form as that for
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8 flat plate at zero incidence. For a flat plate U; 1is constant and
ei,s = 0 if Xg = 0, so that equetion (2) becomes

v
0

81,501,p n
GP;i = Ali
and since for & flat plate from the momentum integral equation

Cf,av
2

U.1:\2 rc l+n
i%i f,i,av
As(vo) ( 22 ) (3)

The average well friction coefficient was in turn evaluated for laminar
Tflow by the Blasius equation

g
7

.328
Z’iav = 2 (4)
Uily

Yo

Cr

and for turbulent flow by the Falkner expression

0.0306
= 77 (s)

av
Yo

A= 0.44]1 for lasminar flow

Cft, i

so that

A= 0.0076 for turbulent flow

The two-dimenslional case is obtained by omitting R in equations
(1) and (2). It is interesting to note that the formuls for momentum
thickness (eq. (2)) has the same form as that given by Buri (ref. 8) and
Maskell (ref. 7) for turbulent flow, and by Walz (ref. 8) for leminar’
flow, in spite of widely different methods of derivation. The exponent
on Uiei/bo is given as 0.25, 0.2155, and 0.167 for turbulent flow by

references 6, 7, and 9, respectively, vhereas the exponent on the U

term 1s glven as 4.0, 4.2, and 3.33, and the A constants are 0.015,
0.01173, and 0.0076. TFor laminer flow, n= 1 in both references 8 and
9. Reference 8 lists A as 0.470 in place of the 0.441 value in
reference 9.

927
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When considering both laminar end turbulent flow, the final expres-
sion by Truckenbrodt for momentum thickness may be written as

Xp
o; = _UELR_ Ao 0582 ax 7/12 . At"é/s U}O/SRT/g - 6/7 o
i

0 X

where Xq 1s the longitudinal distance to transition. The expression
inside the brackets is the contribution of the laminar boundary layer,
and the remaining part inside the braces is the contribution of the tur-
bulent boundasxry layer.

Incompressible Profile Parameter

As stated in the INTRODUCTION, the method of reference 9 for deter-
mining the profile parameter differs from the other methods in that
Truckenbrodt succeeded in determining the profile parameter in an ex-
plicit form. The momentum equation

1 42 0; AUy  Ty,1
—— =(UjRO;) + H; = o= = —2= (7)
uZr & i U & T 5 uE

was subtracted from the kinetic energy equation (1) msaking

dH; = 63 dUy d+t = Tw,i
0y —= = (Hi - ]_)Hi = + 2 - H, W2l (8)
18X Uy ax 1
T poU3 poUg

Note that this expression is independent of R. Equation (8) was re-
arranged to the following form:

Us 6.\ U:0:\" 95 du
171} g, 4L (171} 71 (1) (9)
A 13ax Vo U; & i

where the profile parameter Iy 1s defined by
-
Hp,y (i - DE

and n
a+t = Tw,i\[Yi%:1
-{2 2~ Hy 2y
PoUs poUt/\ O

(B; - 1)E;

K(L) =
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The quantity Ly was arbitrarily chosen as zero for zero pressure gra-
dient flows so that the value of Hp,; was set at 2.6 for laminar flow
and at 1.4 for turbulent flow. '

The data of references 16 to 19 for turbulent flow, and the
Hartree profiles (numerically evaluated in ref. 20) for lsminar flow were
used to arrive at approximate expressions for K aeg a function of Iy,

and Ly as & function of Hj.
An adequate approximation for the quantity K(Li) is
K(Ly) = oLy - b) (10)
where
2.87 for laminsr flow with pressure drop
@ =4¢ 3.53 for laminar flow with pressure rlse

0.0304 for turbulent flow

= { O for laminar flow
0.0305 1n U384 /vg - 0.23 for turbulent flow

The resulting relations between L; and H; are shown in figure 1.

Substitution of equation (10} in equation (9) results in a first
degree linear differential equation, then solved for Lj. The result is

&
£s,1 Uy 1 Uy
b - o a 13
Ly = E, Lg,i *+ 1n (?s,i + In Us 1 & (11)
s,1
where
X (a/l)z :
£,1= |M&Y f UpR? ax (12a)
(4]
for laminar flow
Xp 112 X (o/B)
Ei,t =4 |AY0 USR? ax + At\%/s U%°/537/16 ax (12v)

0 Xp

™

1

92¢¥
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for turbulent flow. The parameter Ei is defined by the two equations
(12a) and (12b) since the change of profile parameter through the tran-
sition region will be handled as & discontinuity, as will be discussed
later in the Initial Conditions section.

The calculation procedure may be briefly summarized as follows: for
a given veloclty distribution over a known body, the momentum thickness
distribution is first calculated using equation (6); then the profile
parameter L4 1s calculated as a function of the longitudinal distance
from equations (11) and (12), and finally, the conventional form factor
Hy 1is obtained from the values of Li using figure 1.

Transformation to Compressible Case

A modified Stewartson transformation for a Prandtl number of one
end an adisbatic flow (see Appendix and symbol list) is

X 3y-1 \

a T-1
X= Es dx
(0]

- ’ (22)

Where x, ¥, and r are the compressible "physical" coordinates and

X, Y, and R are the transformed coordinates. Use of these transforma-~
tions in either the Karmdn momentum equation or the Wieghardt kinetic
energy equation yields the following relation for the friction coeffi-

cient (see Appendix).

2
T ag T
_ i,w a9 W
eA=T E* (a_e) °f = (a;) I _ .z (15)
7 PO 7 Pl
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For laminsr flow

%0, 2
WA R :*gf_o(@) .
o - Y=0 oL oy 8e Pe \%e / _Jy=0 cp Z(ao) (14)
£ B2 — - ——
1,1 12L po”i 1 _of 80\ o st ae
2 P\, ) Be

Therefore the transformations satisfy the known relations for the lemi-
nar friction coefficient.

For turbulent flow, the totel shear term includes turbulent as well
as laminsr shear stresses, and no simple expression for the total stresses
ig availeble. Eckert (ref. 21}, however, found that the form of the ex-
pression for s flat plate frictlon coefficient can be made invariant with
the Mach number of the external stream when the properties of the fluid
are based on & proper reference temperature. This reference temperature
ig described as ' .

™ = Ty + 0.5(Ty - Te) + 0.22(Ty - Te)

or
* T
I .0.72-X +0.28
Te Tq
if
Ty = Ty

Expressions for friction coefficient obtained for incompressible flows
can then be extended to apply to compressible flows. From reference 21

(‘_fﬁ-——-——=—c£‘ (15)

Applying this method to equation (4) of this report and assuming that
the viscosity varies linearly with temperature,

92¢Y
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The effect of compressibility on the turbulent friction coefficient could
be shown through the ratio

2
Cfy He o* ae
c = 7w\ P, \&F (16)
T1,% (p Ul) e \@

N

where ch 1s defined as the constant fluld-property (incompressible)

friction coefficient for the same Reynolds number as the compressible
stream and should be kept distinet from the incompressible friction co-
efficient cry in the transformed plene. The agreement between the re-

sults of equation (16)(y = 1.4) and those of references 21 to 26 is shown
in figure 2. The curve of equation (16) i1s somewhat lower than that of
reference 21, based upon the Schultz-Grunow equation (ref. 27). Closer
agreement of equation (16) with reference 21 and the experimental data
could have been obtained by adjustment of the constants in the expression
for reference temperature. This adjustment was not believed necessary
for purposes of the present study.

A transformation of the compressible frietion coefficient by use of
equations (Al), (5), and (15) results in

0.0306

R - c* p* _ p*
Ty T T oy (* )177 Pe

p Ul
a \&
(a )
0.0306| —x

e
2 3r-1 1/7

i

7}
8o\ E)‘r-l . . ﬁ) r-1 . (@)2 1
EJACS 0 a9 Ge N\e*/ ¥o

(17)
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In figure 3 it is shown that

3 - (39-)6/7 (18)

&0

so that equation (17) becomes

ae)ss/ ¥ 0.0306

c = —

£y (ao (PoUil)l /7
Ho

Therefore, the transformed friction coefficlient may be expressed as

20\2
“fy,t (’é.';) Ly

__o. 0306 (80)10/ 49
2"
|J.0

Recgll that friction coefficient enters into equatlon (8) through the A
terms, where for turbulent flow

() )"

A combination of this equation with equation (19) yields
5/21
g
A, = 0.0076( — (20)
1=

When Mg+ O, ;g-» 1 so thet equation (6) iemains unaltered for incom-
e -

(19)

pressible flow.

Therefore, under the circumstances considered (insulated surface
and Prandtl number equsls one) the leminar boundary layer is exactly
transformed to the incompressible form, whereas the turbulent boundary
layer is transformed to a form which reduces to the incompressible form

for a Mach number of zero.

92¢¥
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A transformation of equation (6) by means of equations (Al) and (20)
to get the compressible flow momentum thickness gives

% 3v-1 T]7/12
l 0-441\)0 ae T-l
P TTIE % Mgrz(%) =T
ae\ 71
G
3y-1 6/7
1/6 1
0.0076 (Y0 /6 px /s /a2 T Ll 877
2e S/2l\ &g © o ril
<}_) X a -1
& (_?:) VB
8.0 e
(21)
where / . 3y-1
1/6 -1
7/12 . 0.0076 (Y0 &
%=t [z, —_Tae 5 21‘ ag) M%O/3r7/5(£) dx (22)
(FB) p
and . 3y-1
-1
¢ - &:_f%"_o M’grz(%) ax (25)

0

For the completely laminar boundary-layer case, X equals §7/12, and
for the completely turbulent case, X equals only the second term on the
right side of equation (22).

When determining the profile parameter, it is convenient first to
determine Lji and then find H; and H. By substituting equations (Al)

and (20) in expressions (11) and (12), and by using the definitions of
& and b, the following equation results:

L; = (%E)Li-,s + 1n<Ml:eS) + % f [b - ]_u(Mb:;)] de (24)
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where

€ = §6'5 for laminer flow with pressure drop
€= CB for laminar flow with pressure rise
8e )5 /21

E= X %0 Tor turbulent flow

b= Q0 for lamlnar flow

a -1
e ué
0.0305 1n (—;) —] - 0.23 for turbulent flow

o’
It

Yo

Figure 1 can now be used to determine H;. A combination of equations
(A3) and (A5) results in the following expression for H:

H = (;g)z(ﬂi +1) -1 (25)

Boundary-layer profile and momentum thickness for compressible flow

can thus be determined in explicit form by use of equations (21) to (25).

Recall that these equations are written in the more general or exisym-
metric case. For two-dimensional flow merely omit r whenever it

appears.
Initial Conditions

Initial values for laminar flow are derived in reference 9 as
follows: For two-dimensional stagnation—pgint flow,

0.271

o 97-13

92¢%
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For axisymmetric stagnation-point flow,
Li,s = 0.0195
0.235

1 4y
Vo ax

i,8

or
9v-13

_ _0.235 33)2*'2
[T a\o
Yo dx

For both two-dimensional and axisymmetric flow over a sharp-edged or
pointed body,

Og

Li,s =0
and (28)

6i,s fg =0

There will be a relatively small change in € through the transi-
tion region 1f the length of the boundary-layer travel is large, there-
fore, it is reasonable to assume that 6; at the end of the transition

is equal to 6 at the start of tramsition. Apprecisble change in the
profile parameter, however, may take place through the transition region.
For incompressible flow with no pressure gradient, reference 9 lists the
measured results of references 27, 16, and 17 as shown in figure 4. These
results show only a small varistion of change of the incompressible pro-
file parameter through transition as a function of the Reynolds number.
Some data for transition showing a large effect of the pressure gradient
may be found in reference 7 for incompressible flow. Inaccurate assump-
tions of the initial value of H &are quite permissible, however, be-
cause the influence of the values selected for an initial condition van-
ishes rapidly with the distance downstream of the transition. This will
be demonstrated later in the EXPERIMENT section.

EXPERTMENT
The method advanced in this report was compared with a limited

amount of experimental measurements of the boundary lsyer on several
small axisymmetric bodles and on the walls of a large supersonic tunnel.
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The measurements were made with small pitot tubes. Momentum thickness
and form factors were computed with the assumption thet static pressure
and total temperature were constant in the y-direction through the
boundary layer. These assumptlons are the same as those of the appendix.
The Reynolds number (UZ/& was approximately v 5x108 for the axisymmetric
bodles and approximately 2x10° for the supersonic tunnel. The transition
Reynolds number was approximately 1.5x106 on the axisymmetric bodies.

The boundary layer on the tunnel was essentially completely turbulent.

Comparison of theory with measurement made on cones having half
angles of 20° and 25° 18 shown in figure 5. For the case of the constant
pressure gradient (dp/dx = 0), equations (21) can be integrated to give

(- -
3y-1 7/12
" ) -t
0.147v sin ¢
1 0 e\eg .
6= { +
T 5
-1
() ,
& - 6/7
58y-16

—

0_003516%)1/ Wl0/3 o3,7/6 ( er 21( 13/6 _ 13/6)

Thus, no integrals need be evaluated to determine the momentum thickness.
The largest difference between experimental and theoretical momentum
thickness 1s 7 percent, which is probably close to experimental accuracy,

The change of the profile paremeter (H or H;) with the turbulent
boundary-layer growth is negligibly small on these cones since there is
no pressure gredient in the x-direction and the length of the boundary-
layer development is approximately 1 foot. These date therefore were used
as a check of the profile-parameter transformation (eq. (25)). The com-
pressible profile parameter was computed from the incompressible profile-
parameter values of 1.3 and 1.4. This is the maximum range of Hy ob-
tained using equation (26) and figure 4. Good sgreement with the ex-
perimental trend was obtained. :

Figures B and 7 compare theoretical and experimental results for
the cases of moderate and high, adverse pressure gradient (dp/dx > 0).
The sbrupt pressure gradient on figure 7 is due to an externally gener-
ated shock striking the body. These bodies are all conical for
0§ xg 0.233, in which range it was assumed that dp/dx = 0. The ex-
perimental Mach number veriation with distance in the x-direction is
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shown in figures 6(a) and 7(a), and the calculated momentum and dis-
placement variation is shown in figures 6(b) and 7(b). The agreement is
generally within 10 percent, which is again close to the accuracy of the
data.

The effect of making an erroneous asgsumption of the initial value
of the profile parameter is also shown in figure G(b) by the line made
up of short dashes. An initial value of 2.2 (near separation value) was
assigned to Hy even though the pressure gradient in this region was
small. In spite of this poor assumption, the solution converged to the
original curve (in which H; was assumed to be 1.4} in a very short
distance.

The case of a favorable pressure gradient (dp/dx < 0) on the wall
of a supersonic tunnel is shown in figure 8. Since the flow in this
case was neither completely axisymmetric or two-dimensional, an effec-
tive radius equal to the tunnel wetted perimeter at each axial station
and divided by 2n was used for r in equation (21). This computed
result was compared with the experimental 6 and H measured on two ad-
Jacent tunnel walls. Experimental agreement with theory was generally
within 10 percent.

Only small changes in the incompressible profile parameter (Hi) were
obtained in the cases of the favorable and moderate adverse pressure
gradient. Large changes, however, were obtained for the compressible
profile parsmeter (H). Therefore, for rough approximations in these
cases and when initial conditions are known quite well, it may be per-
missible to hold H; constant and determine H from equation (25) only,
thus eliminating the use of equation (24). Obviously, the elimiration
of equation (24) would not be permissible for boundary layers in the
region of large adverse pressure gradients.

CONCLUDING REMARKS

A method has been presented herein which enables a determination of
the compressible boundary-layer growth and profile over both two-
dimensional and exisymmetric bodies. Both momentum thickness and profile
parameter are obtained by simple quadratures. The method includes both
laminar and turbulent flow; however, the experimental check involved
meinly turbulent flow. The momentum thickness at the transition point
was calculated to be approximately 10 percent of the total momentum
thickness for the cones and axisymmetric bodies. Comparison was made
between theory and experiment for flows with zero, adverse, and favorable
pressure gradients in the direction of boundary-layer traevel. For most
cases studied, agreement between experiment and theory was within 10

percent.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 16, 1937
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AFPPENDIX - TRANSFORMATION OF MOMENTUM AND ENERGY EQUATIONS

The modified Stewartson transformation used in this report is:

b'e 3r-1 )
a,\ r-1
= J, @) =
0
y
=?_e_ .R.dy
“0.Jo Po
89 ? (A1)
Ui-.-_'aoMe:-a-e—U
g
0
Uy = — u
17 &g
and for axlisymmetric flow it will be shown that the radius is
invariant with these transformations so that
R=1r . J

These relations will be used to transform the compressible momentum
and energy equations to corresponding equations of the incompressible
form. In like mammer, it could be shown that these relations can be used
for the inverse transformstions, that is, from the incompressible to the

compressible form.

It will be assumed that there is no heat transfer, that the Prandtl
number equals one, that static pressure is constant in the y-direction
for 0 y<£ 6, and that the flow external to the boundary layer is
isentropic.

Any of the equations in this appendix can be applied to two-
dimensional flow by omitting the r and R terms.

Momentum Equation

The Kérmén momentum integral equation for axisymmetric compressible
flow can be written as follows:

14

. au 5% Tw ( 52)
rpeU dx

2 1
(I‘peU e) + ﬁ a—x— = 5
. peU

92¢¥
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To transform this equation, some useful relstions will be derived.
By definition
5]
u u
6 = - =\dy
-
and by using equation (A1)
3]
P i u
o - 20P0 Ei_(l i _1)&
aepe 0 Ui Ui
then also T+1

6 = (_a_o)r—l 84 (a3)

By definition

with equation (A1)

since
p of
e ;E__ r-1.,2 _ i
S = Te = 1 + 5 Me U2 (A4)
i
therefore, T+l 8y
3# a0\~ Y r-1.2 uj Uy uf
5] — 1l - 2=+ 7 Ml - = +— - s /|dY

(a5)
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From equation (Al)

and

since

and

Therefore,

) Lrpile
ax y-1.2
1+ L2 2

NACA TN 4022

(46)

(a7)

(48)

(49)

By substituting equations (A1), (A3}, (a5), (46), and (AB) in equation

(a2)

B0 a
2n aX
UiR
1 s [a
U & ] T oLz

92<¥



4326

NACA TN 4022 21

After using equation (AS) and collecting terms, there results

§% au 2 g
2 S (UFRoy) + Uli = = (Z%) - ;2 (A10)
e

and thus the momentum equation takes the incompressible form if
(ag/ee )8 ¢ /be = Ti’w/bon This transformetion of the friction term

is discussed in the THEORY section of this report.

Energy Equation

The kinetic energy integral equation of Wieghardt for axisymmetric
compressible flow may be written in the following integral form:

tS]
a =
1 dU - Tw
Us Tx(pels0™) - a(;,-.e - 1)‘13’ I 2 5

(a11)

Equations (A1), (A8), and (A8) are substituted in equation (All) to glve:

o () ] -

3r-1 5y o
1 ae) T-1 duy uy
Ui\ &g, ax ui PoBo p Ty
1+ X =mg U3 pete P peUz
a 0 0
since
5**=f6 1——2—)dy=p—0f-q suil-EdY
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By using equations (A4} and (A9) in equation (A12),

2
v - 14580 %1
1 a4 3 g Uj &X uy uy
L L uimelt) - dafy By
au3g X 1+ X1 y2 Ui\"  u?
2 =]
3 duy 81 B1 .~
— p—— 2 —
yp & Yy -1gef; M)y (Eg) o U
2 e 0
and by collecting terms,
U3
1 d (US **) ai ao 2 TW a TJTj.- (
—=— =(UIRST") = (—) —_— ay A13)
ZU?R ax+i i : ae peUZ -TY— ..

which is the incompressible form of the Wieghardt kinetic energy equation
17 (eg/2e)? Ty/PeU? = Ty y/poU%. Thus, if the friction transformation is

satisfied 1n the momentum equation, it is satisfied in the Wieghaxrdt
kinetic energy equation.
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Profile parameter equal to ratio of displacement to momentum thickness, Hi
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5.8

2.8

(2) Leminar flow

1.2

-0.
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Profile parameter in eqa. (11) and (24), Ly

(b) Turbulent £low.

Figure 1. - Relations between lncompressible boundary-layer

profile parameters (ref. 9).
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Ratlo of compressible to constant fluid property

friction coefficient, cf/cf,I
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FPigure 2. - Effect of compressibility on skin friction of a

flat plate.
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tlon temperature. Ratlo of specific heat, 1.4.
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Figure 4. - Change of incompressible form factor in the range of transition from lsminsr to

turbulent flow (ref. 9). No pressure gradient.
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Figure 5. - Boundary layer on & cone (no pressure gradient).
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Mach number, M,
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(a) Mach number gradient.

Figure 6. -~ Boundary layer on en agxisymmetric body with mod-
erate adverse pressure gradient.
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Figure 6. - Concluded.

Boundary layer on an axisymmetric

body with moderate adverse pressure gradient.
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(a) Mach number gradient.

Figure 7. - Boundary layer on an sXisymmetric body with high,
sdverse pressure gradient. :
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Flgure 7. - Concluded.

Boundary layer on an exisymmetrie

body with high, adverse pressure gradient.
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Figure 8. - Boundery layer on the walls of a wind tunnel with favorable pres-
sure gredient,
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